Tech

Blockchain technology for mobile multi-robot systems

Published

on

  • Dudek, G., Jenkin, M. R., Milios, E. & Wilkes, D. A taxonomy for multi-agent robotics. Autonomous Robot. 3, 375–397 (1996).

    Article 

    Google Scholar
     

  • Parker, L. E. Multiple mobile robot systems. In Springer Handbook of Robotics 921–941 (Springer, 2008). This paper presents an accessible introduction to the foundations and early successes of mobile multi-robot systems.

  • Zhang, L., Zhang, Z., Siegwart, R. & Chung, J. J. Distributed PDOP coverage control: providing large-scale positioning service using a multi-robot system. IEEE Robot. Autom. Lett. 6, 2217–2224 (2021).

    Article 

    Google Scholar
     

  • Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F. & Dorigo, M. Mergeable nervous systems for robots. Nat. Commun. 8, 439 (2017).

    Article 

    Google Scholar
     

  • Timmis, J., Ismail, A. R., Bjerknes, J. D. & Winfield, A. F. T. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems. Biosystems 146, 60–76 (2016).

    Article 

    Google Scholar
     

  • Mathews, N., Christensen, A. L., Stranieri, A., Scheidler, A. & Dorigo, M. Supervised morphogenesis: exploiting morphological flexibility of self-assembling multirobot systems through cooperation with aerial robots. Robot. Autonomous Syst. 112, 154–167 (2019).

    Article 

    Google Scholar
     

  • Rizk, Y., Awad, M. & Tunstel, E. W. Cooperative heterogeneous multi-robot systems: a survey. ACM Comput. Surv. 52, https://doi.org/10.1145/3303848 (2019). This paper presents an overview of recent research achievements as well as open challenges in multi-robot systems.

  • Dorigo, M., Theraulaz, G. & Trianni, V. Swarm robotics: past, present and future. Proc. IEEE 109, 1152–1165 (2021). This review surveys the past, present and future of swarm robotics, discussing open challenges and research directions.

    Article 

    Google Scholar
     

  • Wurman, P., D’Andrea, R. & Mountz, M. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29, 9–20 (2008).


    Google Scholar
     

  • Yang, G.-Z. et al. The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018).

    Article 

    Google Scholar
     

  • Dorigo, M., Theraulaz, G. & Trianni, V. Reflections on the future of swarm robotics. Sci. Robot. 5, abe4385 (2020).

    Article 

    Google Scholar
     

  • Wilson, J. et al. Trustworthy swarms. In Proc. First Int. Symp. Trustworthy Autonomous Systems https://doi.org/10.1145/3597512.3599705 (ACM, 2023).

  • Strobel, V., Castelló Ferrer, E. & Dorigo, M. Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In Proc. 17th Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS 2018) 541–549 (IFAAMAS, 2018).

  • Castelló Ferrer, E., Hardjono, T., Pentland, A. & Dorigo, M. Secure and secret cooperation in robot swarms. Sci. Robot. 6, abf1538 (2021).

    Article 

    Google Scholar
     

  • Hunt, E. R. & Hauert, S. A checklist for safe robot swarms. Nat. Mach. Intell. 2, 420–422 (2020). This paper presents a ten-item checklist to determine whether a robot swarm is safe.

    Article 

    Google Scholar
     

  • Castelló Ferrer, E. If blockchain is the solution, robot security is the problem. Front. Blockchain 6, 1181820 (2023).

    Article 

    Google Scholar
     

  • Strobel, V., Pacheco, A. & Dorigo, M. Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy. Sci. Robot. 8, eabm4636 (2023). This paper presents the first large-scale proof of concept of how to integrate blockchain technology into decentralized multi-robot systems.

    Article 

    Google Scholar
     

  • Santos De Campos, M. G., Chanel, C. P., Chauffaut, C. & Lacan, J. Towards a blockchain-based multi-UAV surveillance system. Front. Robot. AI 8, 557692 (2021).

    Article 

    Google Scholar
     

  • Grey, J., Godage, I. & Seneviratne, O. Swarm contracts: Smart contracts in robotic swarms with varying agent behavior. In Proc. 2020 IEEE Int. Conf. Blockchain (Blockchain 2020) 265–272 (IEEE, 2020).

  • Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/bitcoin-paper (2008). This article describes the first practical implementation of a consensus-based decentralized digital currency that overcomes the Byzantine generals problem and introduces blockchain technology as a ledger for storing transactions of the cryptocurrency Bitcoin.

  • Buterin, V. A next-generation smart contract and decentralized application platform. Ethereum Project white paper. Ethereum https://ethereum.org/en/whitepaper/ (2014). In this work the blockchain framework Ethereum generalizes the idea behind a blockchain from a store of value to a decentralized computing system, enabling smart contracts.

  • Peña Queralta, J. et al. Blockchain and emerging distributed ledger technologies for decentralized multi-robot systems. Curr. Robot. Rep. 4, 43–54 (2023).

    Article 

    Google Scholar
     

  • Aditya, S., Singh, R., Singh, P. K. & Kalla, A. A survey on blockchain in robotics: issues, opportunities, challenges and future directions. J. Netw. Computer Appl. 196, 103245 (2021).

    Article 

    Google Scholar
     

  • Peña Queralta, J. & Westerlund, T. Blockchain for mobile edge computing: Consensus mechanisms and scalability. In Mobile Edge Computing 333–357 (Springer, 2021).

  • Singh, A. et al. Sidechain technologies in blockchain networks: an examination and state-of-the-art review. J. Netw. Comput. Appl. 149, 102471 (2020).

    Article 

    Google Scholar
     

  • Strobel, V. & Dorigo, M. Blockchain technology for robot swarms: A shared knowledge and reputation management system for collective estimation. In Swarm Intelligence—Proc. ANTS 2018—11th Int. Conf. 425–426 (Springer, 2018). [Lecture Notes in Computer Science 11172].

  • Strobel, V., Castelló Ferrer, E. & Dorigo, M. Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 7, 54 (2020).

    Article 

    Google Scholar
     

  • Pacheco, A., Strobel, V. & Dorigo, M. A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In Swarm Intelligence—Proc. ANTS 2020—12th Int. Conf. 3–15 (Springer, 2020). [Lecture Notes in Computer Science 12421].

  • Pacheco, A., Strobel, V., Reina, A. & Dorigo, M. Real-time coordination of a foraging robot swarm using blockchain smart contracts. In Swarm Intelligence—Proc. ANTS 2022—13th Int. Conf. 196–208 (Springer, 2022). [Lecture Notes in Computer Science 13491].

  • Castelló Ferrer, E., Jiménez, E., Lopez-Presa, J. L. & Martín-Rueda, J. Following leaders in Byzantine multirobot systems by using blockchain technology. IEEE Trans. Robot. 38, 1101–1117 (2021).

    Article 

    Google Scholar
     

  • Alsamhi, S. H. et al. Blockchain-empowered security and energy efficiency of drone swarm consensus for environment exploration. IEEE Trans. Green. Commun. Netw. 7, 328–338 (2023).

    Article 

    Google Scholar
     

  • Mokhtar, A., Murphy, N. & Bruton, J. Blockchain-based multi-robot path planning. In Proc. 5th IEEE World Forum on Internet of Things (WF–IoT 2019) 584–589 (IEEE, 2019).

  • Grey, J., Seneviratne, O. & Godage, I. Blockchain-based mechanism for robotic cooperation through incentives: Prototype application in warehouse automation. In Proc. 2021 IEEE Int. Conf. Blockchain (Blockchain 2021) 597–604 (IEEE, 2021).

  • Mallikarachchi, S., Dai, C., Seneviratne, O. & Godage, I. Managing collaborative tasks within heterogeneous robotic swarms using swarm contracts. In Proc. 4th IEEE Int. Conf. Decentralized Applications and Infrastructures (DAPPS 2022) 48–55 (IEEE, 2022).

  • Castelló Ferrer, E., Rudovic, O., Hardjono, T. & Pentland, A. Robochain: A secure data-sharing framework for human-robot interaction. In Proc. 10th Int. Conf. Health, Telemedicine, and Social Medicine (eTELEMED 2018) 124–130 (IARIA, 2018).

  • Alsamhi, S. H. & Lee, B. Blockchain-empowered multi-robot collaboration to fight COVID-19 and future pandemics. IEEE Access. 9, 44173–44197 (2021).

    Article 

    Google Scholar
     

  • Kapitonov, A., Lonshakov, S., Bulatov, V., Montazam, B. K. & White, J. Robot-as-a-service: from cloud to peering technologies. Front. Robot. AI 8, 560829 (2021).

    Article 

    Google Scholar
     

  • Kapitonov, A., Lonshakov, S., Krupenkin, A. & Berman, I. Blockchain-based protocol of autonomous business activity for multi-agent systems consisting of UAVs. In 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS) 84–89 (IEEE, 2017).

  • Ongaro, D. & Ousterhout, J. In search of an understandable consensus algorithm. In 2014 USENIX Annu. Technical Conf. (USENIX ATC 14) 305–319 (2014).

  • Androulaki, E. et al. Hyperledger Fabric: A distributed operating system for permissioned blockchains. In Proc. 13th EuroSys Conf. 1–15 (ACM, 2018).

  • Salimi, S., Peña Queralta, J. & Westerlund, T. Hyperledger Fabric blockchain and ROS 2 integration for autonomous mobile robots. In 2023 IEEE/SICE Int. Symp. System Integration 1–8 (IEEE, 2023).

  • Wardega, K., von Hippel, M., Tron, R., Nita-Rotaru, C. & Li, W. Byzantine resilience at swarm scale: A Decentralized Blocklist Protocol from inter-robot accusations. In Proc. 2023 Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS ’23) 1430–1438 (IFAAMAS, 2023).

  • Hoffmann, F. Challenges of proof-of-useful-work (PoUW). In Proc. IEEE 1st Global Emerging Technology Blockchain Forum: Blockchain & Beyond (iGETblockchain 2022) https://doi.org/10.1109/iGETblockchain56591.2022.10087185 (IEEE, 2022).

  • Tran, J. A. et al. SwarmDAG: a partition tolerant distributed ledger protocol for swarm robotics. Ledger 4, https://doi.org/10.5195/ledger.2019.174 (2019).

  • Keramat, F., Peña Queralta, J. & Westerlund, T. Partition-tolerant and Byzantine-tolerant decision making for distributed robotic systems with IOTA and ROS2. IEEE Internet Things J. 10, 12985–12998 (2023).

    Article 

    Google Scholar
     

  • Salimpour, S., Keramat, F., Peña Queralta, J. & Westerlund, T. Decentralized vision-based Byzantine agent detection in multi-robot systems with IOTA smart contracts. In Foundations and Practice of Security: 15th Int. Symp., FPS 2022, Revised Selected Papers 322–337 (Springer, 2023).

  • Al-Breiki, H., Rehman, M. H. U., Salah, K. & Svetinovic, D. Trustworthy blockchain oracles: review, comparison, and open research challenges. IEEE Access. 8, 85675–85685 (2020).

    Article 

    Google Scholar
     

  • Mühlberger, R. et al. Foundational oracle patterns: Connecting blockchain to the off-chain world. In Business Process Management: Blockchain and Robotic Process Automation Forum 35–51 (Springer, 2020).

  • Zhao, H. et al. A generic framework for Byzantine-tolerant consensus achievement in robot swarms. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems—IROS 2023 8839–8846 (IEEE, 2023).

  • Valentini, G., Brambilla, D., Hamann, H. & Dorigo, M. Collective perception of environmental features in a robot swarm. In Swarm Intelligence—Proc. ANTS 2016—10th Int. Conf. 65–76 (Springer, 2016). [Lecture Notes in Computer Science 9882].

  • Brekke, J. K. & Alsindi, W. Z. Cryptoeconomics. Internet Policy Rev. 10, https://doi.org/10.14763/2021.2.1553 (2021).

  • Andola, N., Raghav, Yadav, V. K., Venkatesan, S. & Verma, S. Anonymity on blockchain based e-cash protocols—a survey. Computer Sci. Rev. 40, 100394 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Conoscenti, M., Vetrò, A. & De Martin, J. C. Blockchain for the Internet of Things: A systematic literature review. In Proc. 13th IEEE/ACS Int. Conf. Computer Systems and Applications (AICCSA 2016) 1–6 (2016).

  • Raymond, E. S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary (O’Reilly Media, 1999).

  • Rodler, M., Li, W., Karame, G. O. & Davi, L. EVMPatch: Timely and automated patching of Ethereum smart contracts. In Proc. 30th USENIX Security Symposium (USENIX Security 21) 1289–1306 (USENIX Association, 2021).

  • DuPont, Q. Experiments in algorithmic governance: A history and ethnography of ‘The DAO,’ a failed decentralized autonomous organization. In Bitcoin and Beyond: Cryptocurrencies, Blockchains, and Global Governance 157–177 (Routledge, 2017).

  • Sabt, M., Achemlal, M., & Bouabdallah, A. Trusted Execution Environment: What it is, and what it is not. In Proc. 14th IEEE Int. Conf. Trust, Security and Privacy in Computing and Communications 57–64 (IEEE Press, 2015).

  • Wöhrer, M. & Zdun, U. Design patterns for smart contracts in the Ethereum ecosystem. In Proc. IEEE 2018 Int. Congress on Cybermatics 1513–1520 (IEEE, 2018).

  • Van Calck, L., Pacheco, A., Strobel, V., Dorigo, M. & Reina, A. A blockchain-based information market to incentivise cooperation in swarms of self-interested robots. Sci. Rep. 13, 20417 (2023).

    Article 

    Google Scholar
     

  • Hassan, S. & De Filippi, P. Decentralized autonomous organization. Internet Policy Rev. 10, https://doi.org/10.14763/2021.2.1556 (2021).

  • Wang, S. et al. Decentralized autonomous organizations: concept, model, and applications. IEEE Trans. Computational Soc. Syst. 6, 870–878 (2019).

    Article 

    Google Scholar
     

  • Cardenas, I. S., May, J. B. & Kim, J.-H. AutomataDAO: A blockchain-based data marketplace for interactive robot and IoT data exchanges using Ethermint and state channels. In Blockchain Technology for IoT Applications 17–38 (Springer, 2021).

  • Reina, A. Robot teams stay safe with blockchains. Nat. Mach. Intell. 2, 240–241 (2020).

    Article 

    Google Scholar
     

  • Danilov, K., Rezin, R., Afanasyev, I. & Kolotov, A. Towards blockchain-based Robonomics: Autonomous agents behavior validation. In Proc 9th IEEE Int Conf Intelligent Systems (IS 2018) 222–227 (IEEE, 2018).

  • Abou Jaoude, J. & Saade, R. G. Blockchain applications—usage in different domains. IEEE Access. 7, 45360–45381 (2019).

    Article 

    Google Scholar
     

  • Castelló Ferrer, E. et al. Gaka-chu: A self-employed autonomous robot artist. In Proc. 2023 IEEE Int. Conf. Robotics and Automation (ICRA 2023) 11583–11589 (IEEE, 2023).

  • Lajoie, P.-Y., Ramtoula, B., Wu, F. & Beltrame, G. Towards collaborative simultaneous localization and mapping: a survey of the current research landscape. Field Robotics 2, 971–1000 (2022).

    Article 

    Google Scholar
     

  • Chong, C.-Y., Chang, K.-C. & Mori, S. A review of forty years of distributed estimation. In Proc. 21st Int. Conf. Information Fusion (Fusion 2018) 1–8 (IEEE, 2018).

  • Douceur, J. R. The Sybil attack. In 1st International Workshop on Peer-to-Peer Systems 251–260 (Springer, 2002). [Lecture Notes in Computer Science 2429].

  • Saeedi, S., Trentini, M., Seto, M. & Li, H. Multiple‐robot simultaneous localization and mapping: a review. J. Field Robot. 33, 3–46 (2016).

    Article 

    Google Scholar
     

  • Kegeleirs, M., Grisetti, G. & Birattari, M. Swarm SLAM: challenges and perspectives. Front. Robot. AI 8, 618268 (2021).

    Article 

    Google Scholar
     

  • Majcherczyk, N., Srishankar, N. & Pinciroli, C. Flow-FL: Data-driven federated learning for spatio-temporal predictions in multi-robot systems. In Proc. 2021 IEEE Int. Conf. Robotics and Automation (ICRA 2021) 8836–8842 (IEEE, 2021).

  • Zakir, R., Dorigo, M. & Reina, A. Robot swarms break decision deadlocks in collective perception through cross-inhibition. In Swarm Intelligence—Proc. ANTS 2022—3th Int. Conf. 209–221 (Springer, 2022). [Lecture Notes in Computer Science 13491].

  • Castelló Ferrer, E. The blockchain: A new framework for robotic swarm systems. In Proc. Future Technol. Conf. (FTC 2018) Vol. 881 1037–1058 (Springer, 2018).

  • Maskin, E. Introduction to mechanism design and implementation. Transnatl. Corporations Rev. 11, 1–6 (2019).

    Article 

    Google Scholar
     

  • White, R., Caiazza, G., Cortesi, A., Cho, Y. & Christensen, H. Black block recorder: immutable black box logging for robots via blockchain. IEEE J. Robot. Autom. 4, 3812–3819 (2019).

    Article 

    Google Scholar
     

  • Lopes, V. & Alexandre, L. A. Detecting robotic anomalies using Robotchain. In IEEE Int. Conf. Autonomous Robot Systems and Competitions (ICARSC 2019) 174–179 (IEEE, 2019).

  • Lopes, V., Pereira, N., Fernandes, M. & Alexandre, L. A. A time-segmented consortium blockchain for robotic event registration. In Proc. 3rd Int. Conf. Blockchain Technology (ICBCT 2021) 117–122 (ACM, 2021).

  • Talamali, M. S., Saha, A., Marshall, J. A. R. & Reina, A. When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 6, eabf1416 (2021).

    Article 

    Google Scholar
     

  • Zhu W. et al. Self-organizing nervous systems for robot swarms. Preprint at arXiv https://doi.org/10.48550/arXiv.2401.13103 (2024).

  • Dorigo, M., Birattari, M. & Brambilla, M. Swarm robotics. Scholarpedia 9, 1463 (2014).

    Article 

    Google Scholar
     

  • Hamann, H. Swarm Robotics: A Formal Approach (Springer, 2018).

  • Gielis, J., Shankar, A. & Prorok, A. A critical review of communications in multi-robot systems. Curr. Robot. Rep. 3, 213–225 (2022).

    Article 

    Google Scholar
     

  • Demir, K. A., Döven, G. & Sezen, B. Industry 5.0 and human-robot co-working. Procedia Comput. Sci. 158, 688–695 (2019).

    Article 

    Google Scholar
     

  • Lamport, L., Shostak, R. & Pease, M. The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–401 (1982). This foundational paper introduces the Byzantine generals problem — a thought experiment that highlights the challenges of achieving a consensus in distributed networks where the agents (the ‘Byzantine generals’) are not necessarily reliable.

    Article 

    Google Scholar
     

  • Castro, M. & Liskov, B. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Computer Syst. 20, 398–461 (2002).

    Article 

    Google Scholar
     

  • Dwork, C., Lynch, N. & Stockmeyer, L. Consensus in the presence of partial synchrony. J. ACM 35, 288–323 (1988).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chaum, D., Fiat, A. & Naor, M. Untraceable electronic cash. In Advances in Cryptology—Crypto ’88 (Springer, 1990). [Lecture Notes in Computer Science 403].

  • Dwork, C. & Naor, M. Pricing via processing or combatting junk mail. In Proc. Annu. Int. Cryptology Conf.—Advances in Cryptology (Crypto’ 92) 139–147 (Springer, 1992). [Lecture Notes in Computer Science 740].

  • Fuente

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Información básica sobre protección de datos Ver más

    • Responsable: Miguel Mamador.
    • Finalidad:  Moderar los comentarios.
    • Legitimación:  Por consentimiento del interesado.
    • Destinatarios y encargados de tratamiento:  No se ceden o comunican datos a terceros para prestar este servicio. El Titular ha contratado los servicios de alojamiento web a Banahosting que actúa como encargado de tratamiento.
    • Derechos: Acceder, rectificar y suprimir los datos.
    • Información Adicional: Puede consultar la información detallada en la Política de Privacidad.

    Trending

    Exit mobile version